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Using exact methods, pair-correlation functions are studied in the dimer model 
defined on a brick lattice. At long distances these functions exhibit strongly 
anisotropic algebraic decay and, near criticality, the length scales diverge dif- 
ferently in the two principal directions. The critical exponents are vx = �89 and 
Vy = 1. These results are in agreement with deductions drawn from recent exact 
finite-size scaling calculations. We also interpret our results in the light of 
domain wall theories of commensurate-incommensurate transitions, and in par- 
ticular we study the relation of the present model to the discrete version of the 
Pokrovsky Talapov model introduced by Villain. 

KEY WORDS: Dimers, Ki-models, pair correlations, phase transitions, 
commensurate-incommensurate transition, domain walls. 

1. I N T R O D U C T I O N  

Some interesting properties of the dimer model on the brick (or 
honeycomb) lattice (see Fig. 1) were first pointed out by Kasteleyn ~1) who 
solved the partition function problem exactly. His solution showed that the 
system remains "frozen" in a state identical to the ground state for tem- 
peratures below the critical temperature at which it undergoes a phase 
transition to the disordered phase. The source of this intriguing result can 
be traced back to the dimer constraints imposed by the brick lattice which 
force the number of horizontal dimers in the rows to be a conserved quan- 
tity. As a consequence there is an infinite energy gap between the ground 
state and the first excited states, which accounts for the peculiar behavior. 
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Fig. 1. One of many states of the K-model. The brick lattice is represented by light solid 
lines and the heavy lines represent dimers, each of which covers one bond and two lattice sites. 
In the K-model each horizontal dimer costs an energy e, whereas vertical dimers cost no 
energy. In the K2-model solved in this paper, each dimer on a horizontal bond labeled 1 or 2 
costs an energy e 1 or e2, respectively. In the original Kl-model solved by Kasteleyn, each 
dimer on a horizontal bond labeled a or b costs an energy ea or eb, respectively. The con- 
figuration of dimers in the figure corresponds to a domain wall state consisting of two walls, 
indicated by dashed lines. 

The rather unusual  characteristics of this model,  which has been called 
the Kasteleyn model  or  simply the K-model ,  (2) have been applied advan-  
tageously to study a number  of different physical systems including 
polymers, (3) lipid bilayer biomembranes ,  (z '4/and ferroelectrics. (5'61 Of  more  
immediate interest to us in the present work  is the recent recognit ion of  the 
fact that  the K-model  is also an exactly solvable model  of domain  walls (7'8) 
and as such is relevant to the study of commensura te - incommensura te  (CI)  
transitions of  monolayers  adsorbed on rectangular  substrates. (9) 

The main objective of  this paper  is to study the d imer~t imer  
correlat ion functions in the K-model .  The long-distance behavior  of these 
correlat ion functions provides a test of  the general phenomenological  
theory of domain  walls, (1~ which predicts the existence of distinct diverging 
length scales in the two or thogona l  directions with critical exponents v x = �89 
and Vy = 1. The results confirm the conclusion of  a recent exact finite-size 
scaling analysis of  the K-model ,  m)  which gave strong, but  indirect, 
evidence for the existence of  these diverging length scales. Another  of  our  
objectives is to study a possible connect ion of the K-mode l  to a part icular  
domain  wall model  of  CI  transitions in t roduced by Villain. (2) In  the next 
section we int roduce a new variat ion of  the K-mode l  which is mos t  suitable 
for this comparison.  We will name this the K2-model.  We compute  the par-  
tition function and the dimer densities for this model  and in the third sec- 
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tion we calculate dimer-dimer correlation functions. The asymptotic form 
of the correlation functions allows us to identify the critical exponents 
associated with the two diverging length scales. Finally, in the last section 
we present one possible way to map the K2-model to the Villain model. (~2) 
The mapping is only approximate, but we argue that under suitable con- 
ditions the approximation involved is justified, which permits the 
application of the results derived for the Kz-model to the Villain model. 

2. P A R T I T I O N  F U N C T I O N  A N D  D I M E R  D E N S I T I E S  

Let us consider the statistical mechanics of the brick lattice fully 
packed with dimers such that each lattice site is occupied by one and only 
one dimer, as shown in Fig. 1. In this work we consider a particular variant 
of the K-model, to be called the K2-model, for which the dimers on the ver- 
tical bonds have zero energy and those on the horizontal bonds of alter- 
nating columns have energies e 1 > 0 and e2 > 0, respectively. The original 
model studied by Kasteleyn, (1) which might be called the K1-model, also 
has three energies; 0, ea, and eb, but the assignment of energies to the 
bonds obeys a hexagonal symmetry rather than the rectangular symmetry 
of the K2-model. In the cases when e~ = g2 = 8 and e, = eb = e, both models 
reduce to the same model, which is the one usually called the K- 
model./2'7's'~a} The motivation behind defining the new K2-model will be 
clarified in Section 4, where we relate it to the Villain model of domain 
walls. 

The partition function for the K2-model is defined as 

s t a t e s  

where zi=exp(-/~ei) ,  for i =  1, 2 w i th / ?=  1/kBT, are the activities and Ni 
is the number of dimers on the i-type horizontal bonds. According to the 
general theorems due to Kasteleyn, (1,13) the partition function of the dimer 
problem on any planar lattice (with free boundaries) can be expressed as a 
Pfaffian of a suitably constructed antisymmetric matrix A: Z = P f ( A ) =  
[det(A)] 1/2. The bond orientations and the unit cell for the construction of 
the matrix A are shown in Fig. 2. For a lattice with Nx and Ny cells in the 
horizontal and vertical directions, respectively, the partition function in the 
bulk limit Nx, Ny ~ oo is given by (13) 

I in z 1 ~ NxN-----~s = ~  dq), d~2 In det A(~I, q~2) (2) 
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Fig. 2. The dashed lines indicated the unit cell and the arrows show the bond orientations 
for the application of the Pfaffian method, The activities of horizontal bonds are labeled zl 
and z 2 and the activities of the vertical bonds are equal to 1, 

where A(~bx, ~b2) is a 4 x 4  matrix with the following nonzero elements 

Ax2 = A 3 4  = - A ~ I  = - A ~ 3  - ~ z  x - z 2 e  i~ 

A I 3 =  - A ~ I  = 1 

A24 = - - A ~ e - - e  i~z 

(3) 

The determinant of the matrix A(~bx, ~2)  is found to be 

det A({bx, q~2) = I lZX - -  Z2 eiol 12 - -  ei42l 2 (4) 

The nature of the low- and the high-temperature phases can be 
deduced from the densities of different types of dimers in these phases. The 
density of i-type horizontal dimers is given by 

( N i )  zi 8 l n Z  
P i -  N - 2 cgzi N x N  s (5) 

where N = 2 N x N y  is the total number of dimers. For example, the 
expression for the 1-type horizontal dimers is 

Zx ~ "  f ~  IZl-Z2eiOq2-c~ 
P l = ~ dq)l(zx - -  Z 2 COS (ill) &b2 det A(q~x, ~b2) (6) 

Using contour integration, the double integral can be computed in closed 
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form. (4) In expressing the results it is helpful to introduce the angular 
variable ~b0 defined as 

(b ~ = sin_ 1 [ ( z x  + z2) 2 - 4zlz2 1] 1/2 if z , + z 2 > l  (7) 

and (b o = 0 if zl + z2 ~ 1. In terms of the variable (bo, the density of horizon- 
tal 1-type dimers can be written in the form 

- -  tan--1 ' - - - -  Z2' 7"C 7"C 
- - c o t  ~bo) ] (8) 

We observe that Pl vanishes for z~ + z2 ~< 1. Since the partition function is 
symmetric in the activities zl and Zz, it follows that pz(z l ,  z2)= pl(z2,  zl).  
Also, the density of dimers on the vertical bonds is Pv = 1 -  P l - P 2 ,  given 
by the simple expression 

2 
Pv = 1 - -  ~b o (9) 

7"[ 

The preceding results show that the model exhibits a phase transition 
at a critical temperature To determined by the equation 

z l ~ + z e ~ = e x p (  k ~ - - T c ) + e x p ( k ~ - - T )  =1 (10) 

From eq. 9 it follows that below T c the density of vertical dimers is unity, 
that is, the low-temperature phase is a fully ordered state with all dimers 
lying on the vertical bonds. The critical properties of various ther- 
modynamic quantities as one approaches the transition point are governed 
essentially by the variable (bo. Equation 7 gives for t - ( T - T c ) / T ~  ~ 0 +  
the asymptotic result 

= l 1/2 + O ( t  3/2) (1 1 ) 
\Z2c 

Using Eq. 11 we conclude that the dimer densities behave as p l , ~ t  1/2, 
P2 ~" tU2, and 1 - Pv ~ tl/2 when t --+ 0+ .  The internal energy per dimer is 
given by u = ~1Pl + e2p2, so that it also behaves as u ~ t 1/2 when t ~ 0+ .  It 
then follows that the specific heat per dimer, c = du/dT, has the asymptotic 
behavior c ~ t -1/2 as t - +  0 +  while it is zero below To, which implies that 
the values of the critical exponents are a' = 0 and a = �89 Thus the K2-model 
belongs to the class of models exhibiting the "3/2-0rder transition. ''(14) 
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3. D I M E R - D I M E R  CORRELATION F U N C T I O N S  

Fisher and Stephenson (is) developed a general perturbation theory of 
Pfaffians in order to study the correlation properties of the dimer model on 
the square lattice. The method can be generalized to other planar 
lattices (16) along the lines of the work of Montroll, Potts, and Ward who 
studied the correlation functions of the Ising model by transforming it into 
a dimer problem. (~7~ In this section we are interested in the correlations 
between pairs of dimers in the deep interior of an infinite brick lattice. The 
pair-correlation function between the bonds a and b is defined as (~5) 

Cab = P a b  - -  P a P b  (12) 

where Pa and P b  denote the occupation probabilities of the bonds a and b, 
and P a b  is the joint occupation probability of the bonds a and b. According 
to the perturbation theory of Pfaffians, (15) the quantity Cab can be 
expressed in terms of the basic antisymmetric matrix A = (Aifl in the form 

Cab = - A  iS A kl(Gik Gjl - -  Gil  Gjk ) ( 13 ) 

where the bonds are denoted by their endpoints, a = (i, j), and b = (k, l), 
and G = (G~j) = A 1 is the Green's function matrix. The explicit expression 
for the Green's function elements in the deep interior of an infinite lattice 
is(16,17) 

Gjk  = I x '  - -  X,  y '  - y]=~, 

';?2 (2~) 2 d~l d~2 A~!(~I, ~2) e-i(x'- x)~l-i(Y'-Y)~2 (14) 

where (x, y) and (x', y ')  denote the coordinates of the lattice cell contain- 
ing the points j and k, respectively, and the numbers e and e' are the iden- 
tifying numbers of these points inside the unit cells in Fig. 2. The nonzero 
elements of the inverse matrix A l(~bl, ~b2) are 

A121 = - A 2 1 1 .  = 

A i ~  1 = - A ~  1 .  = 

A2~ 1 = --A~) 1. = 

A~  1 = -A~) 1. = 

- - Z  1 -~- Z2 eiqtl 

I z 1 - -  Z2 ei~l] 2 _ ei~2 

ei~2 

IZl - -  Z2 ei4q [ 2 - -  ei~2 

1 
i Z l _  z z e i ~ l [ 2  e i~2 

- - Z  1 ~-Z2 ei4q 

[z 1 _ z2eir 2 _ e - i02 

(15) 
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From the integral expression for the Green's function elements eq. 14 
and using eqs. 15 we find the following identities 

[x, y ] ~ =  - E - x ,  - y ] ~  = - E - x ,  - y ] ~  

[X, Y]14 =- [X, Y]23 = [X, y]:~e = 0 

IX, Y]13 = [X, - - y - -  1J24 (16) 

[x, y]i2 = Ix, --Y]34 

Ix,  Y]34 = --ZI[X , y]24-{-Z2[Xn t- 1, Y]24 

Equations 16 show that all the Green's function elements are related in a 
simple way to the element [x, Y]24. From Eqs. 14 and 15 we have, 
explicitly 

1 [2,~ 2~ e-ix~l iy~b2 

[X, y-124=(-~)2Jo fO dO1 d~2 iz 1 _z2ei4ji2 e_i~ 2 (17) 

By carrying out the integration over ~b2 we obtain, for y ~> 0 

f[  cos 2x~b 2 (-1)x ~ (18) [x, Y]24 = -~ Izl + z2e2i4l 2(y + l) 

and, for y < 0 
2 ( - 1 )* r/-/2 cos  2x~ 

[x, Y]24 = - 7  ~+o d~b Izl +z2eZiOlZ(Y+l) (19) 

where ~bo was defined in Eq. 7. We observe in passing that for 
y = - l ( x  r 0) we get from Eq. 19 the particularly simple result 

sin 2~boX 
[x, -1 J24 = ( -1)x _ _  (20) 

7~X 

In order to characterize the different dimer-pair correlations, it is con- 
venient to denote the six primitive bonds, two vertical and four horizontal, 
by the letters v, v', h l, h 2, h'l, and h i, as shown in Fig. 3. As an example we 
consider the pair-correlation function between two vertical v dimers. Using 
Eq. 13 we have 

Cvv(X, y)= -(Ix, y]li[x, f333- [x, yJi3[x, y]~l) (21) 

With the help of the identities in Eqs. 16 we can put Eq. 21 in the form 
involving only the elements [x, Y]24 

Cvv(X, y ) =  - [ x ,  - y -  1324[-x,  y -  1324 (22) 
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Fig. 3. The notations for the primitive bonds of the unit cells employed in the calculation of 
the dimer~zlimer correlation functions. The two-unit cells indicated by arrows and by labeled 
bonds are separated by (x, y ) =  (3, 1). 

We observe that for the case of vertical v dimers in the same row, y = 0 and 
x #0 ,  the application of Eq. 20 gives a particularly simple and exact 
expression 

sin2(2~b0x) 
Cvv(X, 0) = 7r2x 2 (23) 

In order to get an intuitive feeling for the spread of short-range dimer 
correlations, we give in Table I the numerical values of the pair correlations 
between the horizontal 1-type bond shown in the bottom left corner of 
Table I and the neighboring bonds. We considered the case z l - -z2  and 
reduced temperature t = 0.1. The numbers in Table I are pair correlations 
multiplied by 106 . The densities, or single-occupation probabilities of the 
vertical and horizontal dimers, can be computed using eqs. 8 and 9. In the 
present case they are Pv = 0.77636427... and pl = P2 = Ph = 0.11181786 .... 
For  the two horizontal bonds adjoining the given h I bond as well as for the 
given h~ bond itself we find for the correlations the value 
_ p 2 =  -0.01250323 .... For  the two vertical bonds adjoining the given hi 
bond the correlation is -pvph=-0.08681139 .... For  these bonds, 
therefore, the joint occupation probability is zero, which simply reflects the 
fact that two dimers cannot overlap at the same site. Also, the sum of the 
correlations of the three bonds incident to one of the two sites occupied by 
the given dimer is just - P h .  Furthermore, the sum of the correlations of 
any three bonds that meet at a common site not occupied by the given 
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Table I. Numerical  Values of the Dimer-Correlat ion Function ( x 10 ~) Relative 
to the Horizontal Bond in the Bot tom Left Corner ( indicated by asterisk) 

for the Case zl =z2  and t = 0 . 1  a 

-10966 56 5607 2508 35 477 

6916 7 6 1 1  3 3 5 4  3048 -3104 -2262 -3345 -1686 -823 -41 6 -78 -399 

-14527 -6402 5366 5030 864 72 

7263 7 2 6 3  7 2 6 3  -861 -709 -4657 -2952 -2078 -731 -133 72 -144 -378 

-14527 1570 7609 2809 61 521 

9803 10755 3 7 7 2  3438 -5008 -3694 -3915 -2053 -756 -90 29 -126 -395 

-20558 -7210 8703 5968 846 97 
10279 10279 10279 -3068 -2542 -6160 -3987 -1981 -763 -83 29 -126 -411 

20558 5611 10147 2744 54 537 

15899 17388 3 1 6 9  2897 -8508 -6350 -3797 -2066 -678 122 68 -158 -379 

-33287 -6067 14858 5863 800 90 

16643 16643 16643 10577 -8822 -6036 -3984 -1879 -781 -19 4 -93 -431 

-33287 19399 10020 2661 15 524 
41527 45284 -11997 -11002 8397 -6339 3681 -2072 -588 -138 123 -174 -351 

-86811 22999 14735 5754 726 50 

-12503 -12503* -12503 -10496 -8811 -5924 -3983 -1771 -788 61 -5 -46 M-37 

86811 19307 9907 2559 56 483 
i 

a Positive correlations have been printed in boldface. This table is similar to a figure given by 
Fisher and Stephenson ~15) for dimers on a square lattice except that they normalized the 
correlation function to be -1 on the horizontal bond in the bottom-left corner. 

dimer is zero; this reflects the obvious requirement  that precisely one of the 

three bonds  is always occupied by a dimer. 

Table 1 gives a picture of the effect of the presence of an hor izontal  
dimer on the occupat ion  probabil i t ies  of the ne ighbor ing  bonds.  It is clear 

that the presence of a hor izontal  dimer enhances the occupat ion  
probabil i t ies of the hor izonta l  bonds  a long the y direction and  depresses 

most  of the occupat ion  probabil i t ies  of the hor izontal  bonds  along the x 

direction. The opposite can be said abou t  the occupat ion  probabil i t ies  of 
the vertical bonds.  However,  there is also a near ly vertical line of hor izon-  

tal bonds  located approximate ly  4.5 uni t  cells away from the given horizon-  

tal dimer where the occupat ion  probabil i t ies  are enhanced.  These obser- 
vations find a na tura l  explana t ion  if we consider the dimer configurat ions 
that occur above the critical temperature.  As has been pointed out by m a n y  
authors,  (1'2'7) the dimer constra ints  in this model  impose a conservat ion of 

the n u m b e r  of hor izontal  dimers in each hor izonta l  row. As a result, the 
horizontal  dimers form stripes, or doma in  walls, r u n n i n g  along the y direc- 
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tion, as can be seen in Fig. 1. The average density of these walls Pw should 
obey the equation 

<N1 + N2 ) 
Pw= 2N~N r (24) 

where the factor 2 accounts for the existence of two horizontal bonds in 
each unit cell. The average distance between the walls l is then given by 

1 IN1NNa) 7 = p w =  = p ,  +p2 = 1 - p v = 2 ~ b o  (25) 

At the particular temperature under consideration we find /=4.471557 .... 
which is consistent with the distance seen in Table I for the vertical line of 
horizontal bonds where the occcupation probabilities are enhanced. The 
oscillatory nature of the correlation functions between pairs of vertical 
dimers along the x direction, given by eq. 23, can also be interpreted as 
resulting from the presence of these walls. In fact, eq. 23 shows local 
maxima at intervals u/2~bo, which is precisely the average separation 
between the walls. 

Let us now consider the long-range dimer correlation functions, which 
are of principal interest in the study of critical phenomena. First we derive 
the asymptotic expressions for Green's function elements. We consider the 
situation T>Tc and (x2+y2)l/2---~O0 with fixed ratio x/y=const. 
Introducing the polar coordinates x = r cos 0, y = r sin 0 and the function 

h(~b) = - s in  0 ln(z 2 + z~ + 2z~z 2 cos 2~b) + i2~b cos 0 (26) 

we can rewrite Green's function element [x, Y]24 for y >~ 0 in the form 

ffo exp[rh(z)] (27) 
[x, Y]24=2 ( - 1 )  xRe dZz~+zZ2+2zlz2cos2z 

and for y < 0 a s  

2 ( _ 1 )x Re ~ ~/2 exp[rh(z)] dz (28) 
Z~ + Z2 a + 2 z l a  2 COS 2z 

For both integrals the real part of the function h(z) is maximum at the 
endpoint z =~b o so that we apply the steepest descent method (18) to the 
vicinity of this endpoint to determine the asymptotic expression for r ~ oo. 
The final result, independent of the sign of y, is 

[x, Y324 (--1)x (x/~x)sin(x/~x)+(Y/(Y)c~ (29) 
~ x  (x/C) 2 + ( Y/~,)2 
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where 

and 

1 
~x = o~2"-- (30) 

1 
~Y= 4ZlZz~bo sin 2~bo (31) 

Using eq. 22 and the asymptotic result eq. 29, we obtain the following 
asymptotic expresion for dimer-pair correlations between two vertical 
bonds 

1 (x/r sin2(X/~x)_ (y/~y)2 COS2(X/~x) 
Cv,(X' Y) 7c2~2 [(X/~x)2 + (y/~y)2]2 

=- C(x,  y )  (32) 

valid for t ~ 0 +  and ~ + y 2 ~  ~ .  In the asymptotic regime all the 
dimer-dimer correlation functions are proportional to C(x, y),  defined in 
eq. 32, according to 

Cab(X ,  y ) ~  Kab C(X, Y) (33) 

where the proportionality factors Kab are given in Table II for all possible 
bond combinations. 

The quantities ~-x and ~y defined in eqs. 30 and 31 set the length scales 
in eq. 32 for the decay of the correlation functions in the two orthogonal 
directions. Therefore, they find a natural interpretation as the correlation 

Table II. The Coeff ic ients Kab a 

/) 
/)t 

hi 
h2 

hi 

v v' h~ h2 h] hh 

1 (ZI-~Z2) 2 --ZI(ZI-}-Z2) --Z2(ZI~-Z2) --ZI(ZI-~-Z2 ) --Z2(Zlq-Z2 ) 
(Zl%-Z2) 2 1 --ZI(ZI~-Z2) --Zz(Zlq-Z2) --ZI(ZI-~Z2) --Z2(Z17t-Z2) 

-z l (z l+z2)  -zx(zl+z2) z~(zt+z2) 2 z,z2(z~+z2) 2 z~ z~z2 
-z2(z,+z2) -z2(z~+z~) z~z~(z l+zy  z~(q+zy  z ~  z~ 
-z~(z,+z~) -z,(z~+z~) z~ zlz~ z~(zl+z2) 2 z~z2(z,+~2) 2 
--z2(zl +z2) -z2(z~+z2) z~z2 z~ z~z2(zl +z~) 2 z~(zl +z2) 2 

a As defined in eq. 33, giving the asymptotic formulas for all possible dimer~timer correlation 
functions. These coefficients are symmetric with respect to the permutation of indices, 
Kab = Kba due to the symmetry requirement Cab(x , y) = Cb~ ( --X, --y), which can be deduced 
from Eq. 13 and the identities Eq. 16. 
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lengths in the model. Since, from eq. 11, ~b o ~ t 1/2 for t ~ 0 + ,  it follows from 
eqs. 30 and 31 that the correlation lengths diverge as the critical points is 
approached from above as 

~x ~ t-vx, ~y ~ t -vy (34) 

with vx = 1 and Vy = 1. These values of the critical exponents vx and Vy are 
in complete agreement with general phenomenological theories of domain 
walls. (1~ They also confirm the conclusions of a recent finite-size 
calculation of the K-modeling; that study, however, did not provide a 
direct proof of the existence of these correlation lengths in the infinite lat- 
tice. 

It is also revealing to rewrite the asymptotic, i.e., scaling, formula, for 
the correlation functions in terms of scaled distances X and Y defined by 

x y = y  
X = - -  and (35) ~ ~y 

which are then reexpressed in terms of polar coordinates 

R 2 = X 2 + y2 and O = cos 1(X/R) (36) 

Then the function C(x, y) defined in eq. 32 becomes 

1 sin(O + R cos 6)) sin(O - R cos O) 
C(R, O ) -  ~2~ R z (37) 

Equation 37 emphasizes the qualitatively different behavior for O = 0, for 
which the correlations oscillate in sign, from the behavior for O--~/2 ,  for 
which the decay is monotonic. It also emphasizes that the scaling function 
undergoes a smooth transformation from one behavior to the other as a 
function of O with the wavelength of the oscillations scaling as 1/cos O. 
Another way to see the highly anisotropic nature of the model is provided 
in Fig. 4 in which the zeros of the asymptotic correlation function and the 
regions of positive and negative correlation functions are shown. The loci 
of zeros is given by the simple formula Y= •  X, as can be checked 
from eq. 32 or 37. 

The preceding results have straightforward meanings in terms of the 
domain wall picture described before. The negative correlations seen in 
Fig. 4 can be interpreted as arising from the repulsive nature of the 
walls. (8'~9) The positive long-range dimer correlations running along the y 
direction at x = 0 is consistent with the existence of the wall at the origin 
running preferentially along the y direction, which tends to enhance the 
joint occupation probabilities along this direction. The other regions of 
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Fig. 4. Zeros of the asymptotic scaling correlation function given by eq. 37. The X and Y 
axes are the dimensionless scaled lengths given by eq. 35. The solid curves show the loci of the 
zeros and the signs indicate the regions where the correlations are positive and negative, 
respectively. 

positive correlations correspond to the other walls running in parallel. This 
intrinsic anisotropy of the wall model is clearly connected to the two dis- 
tinct correlation lengths given by eqs. 30 and 31. 

The temperature plays two roles in determining the correlation 
functions in eq. 37. The first is in determining the scaled distances, eq. 35, 
through the correlation lengths as already described in eq. 34. In addition, 
there is an explicit factor proportional to ~x2~ t= (T-Tc)/Tc in eq. 37. 
The necessity of this t factor will now be illustrated. First, we recall that the 
specific heat of the model Cv is related to the dimer-dimer correlation 
functions, Cab, through the formula 

1 
Cv=~T-~ea~bC.u (38) 

a b  

where e, and e b are the energies of the bonds a and b, respectively, and the 
sum extends over all pair of bonds in the lattice. (The unsolved problem of 
defining an independent susceptibility and of finding those correlations 
which, when summed, give the undefined susceptibility, has been discussed 
for the K-model 2.) Therefore, the leading singular part of the specific heat 
behaves as 

Cv~ffC(x,y)dxdy~t~x~yfj't IC(X, Y)dXdY (39) 

Since the integrand of the last integral does not depend upon temperature, 
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the entire asymptotic temperature dependence comes from the three prefac- 
tors which, by eq. 34, yield the known result that Cv g t-J/2. 

Finally, let us observe that the dimer correlations decay algebraically 
with distance as r -" ,  with t /--2,  as can be seen from eq. 37. This result was 
already established by Sutherland(2~ from that paper the result 
Cx ~ ( T - T c )  -1/2 can  also be obtained, but the ~y correlation length and 
the anisotropy of the correlations are not evident. The dimer correlations 
on the square lattice also exhibit algebraic decay. (1'15) However, algebraic 
decay of the correlations is not a necessary feature of all dimer models, as 
can be seen from the dimer model on the 4-8 lattice where the decay of 
dimer correlations is exponential/16) In the case of the K-model the 
algebraic decay may be attributed to the fact that the walls formed by 
horizontal dimers are never allowed to break or go backward. If such 
defects or dislocations are allowed, as in the recently proposed dimer model 
with dislocations, (211 we expect exponential decay typical of the fluid phase. 

4. R E L A T I O N S H I P  TO THE VILLAIN M O D E L  OF 
D O M A I N  W A L L S  

The main purpose of this last section is to show that the K2-model can 
be mapped approximately to the Villain model, (12~ which is a discrete ver- 
sion of the two-dimensional Pokrovsky-Talapov model of the domain 
walls. (22~ The recent interest in two-dimensional domain wall models 
originates from the study of CI transitions often observed in monolayers of 
adsorbed atoms or molecules. ~ In the commensurate phase the adsorbed 
monolayer forms an ordered structure commensurate with the underlaying 
lattice. As the temperature or chemical potential is varied, the commen- 
surate phase may undergo a phase transition into a disordered, fluid phase, 
into another commensurate phase, or into an incommensurate phase. 
According to current ideas, the transition from commensurate to incom- 
mensurate phase occurs through the spontaneous creation of domain walls 
or misfit lines, which separate regions of essentially commensurate order. 
The simplest systems that have been considered are those with uniaxial, 
rectangular symmetry. The commensurate phase is then a p x 1 uniaxial 
phase, where the absorbate atoms form a superlattice in which the lattice 
constant along one direction is p times larger than the corresponding sub- 
strate lattice constant. Such commensurate phases have been observed, for 
example, in hydrogen adsorbed on Fe( l l0) .  (23) The statistical mechanics of 
the p x 1 uniaxial models has been studied by many authors using different 
techniques.(19'22'24"25'26) 

The Villain model, (12) defined on a square lattice of size Nx x Ny,  is a 
discrete model of walls with hard-core repulsion between them. The walls 
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Fig. 5. Villain model of domain walls. The bold lines represent the domain walls lying on a 
square lattice of size Nx x Ny. Zx and Zy represent the activities associated with horizontal and 
vertical bonds, respectively. The walls cannot turn backward or cross each other, and no two 
consecutive horizontal wall segments are allowed. 

are represented by lines formed by horizontal and vertical bonds, as shown 
in Fig. 5, with the constraint that no segment of the wall can be formed by 
two consecutive horizontal bonds. These walls are also constrained to 
transverse the whole lattice from top to bottom without turning backward 
and they are forbidden from crossing each other. (~2~ This model should 
then be appropriate for the description of the 1 x 1 CI transition in the 
absence of dislocations. To the portion of walls lying on vertical bonds we 
attribute the activity 

Zy = exp( - fl#*) (40) 

where #* is the effective chemical potential of the walls. (12) On the other 
hand, to the portion of walls lying on the horizontal bonds we attribute the 
activity 

Zx = exp( - f ly )  (41) 

where ~ is the line tension of the walls. (~2) The grand canonical partition 
function for the system of walls is 

~ =  y~ ~.x .~ (42) ~'~ _ _  ~ x  Z y  

a l l o w e d  c o n f i g u a t i o n s  

where nx and ny denote the number of horizontal and vertical bo~,ds 
belonging to the walls. 
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In order to relate the Villain model to the K2-model we superimpose 
the square lattice of the Villain model on the square lattice formed by the 
unit cells of the K2-model, as shown in Fig. 6. For each 2-type horizontal 
dimer we associate half of a vertical bond of the wall, whereas to the 1-type 
horizontal dimer we associate one horizontal bond in addition to half of a 
vertical bond of the wall. This correspondence implies the following 
relationship between the dimer activities and the wall activities: 

z 2 = z~/2  = exp(-/3#*/2) 
(43) 

Z I = Z x Z l y / 2  = exp( -/~7 -/~#*/2) 

To each wall configuration in the Villain model there is a corresponding 
dimer configuration in the Kz-model with the same energy, but the con- 
verse is not always true. In fact, some dimer configurations correspond to 
wall configurations that are not included in the Villain model. One typical 
case is illustrated in Fig. 6. However, for a sufficiently high line tension, 
/~7 >> 1, these extra configurations only make an insignificant contribution 

I b i1~ l lll i i l .,, l ll~ I i l l 1  

- ' - - 4  . . . . . .  I H - ; - - ' ~ - ~  . . . . .  ~ : z ~ _ - ~ _ ~ . . - ~  - U l ' 111 I I[I k , , ,  I I , b , , , ,  ~i , 
I ! I I 

I . .  . . . . . . . .  I r--~- ' ,  . . . .  t~, . . . .  L-' . . . . . . .  ~7  
I I I i I I , I I , ,II , ~ , j  

-tJ .... ,,i- - -, ..... I,~ .... I[,'--~-' ..... It I 
I I , I ill--J- , I ,l,I , r ,III ,Ill , ~ I ! 

2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 

Fig. 6. The mapping of the K-model to the Villain model. The brick lattice is shown in light 
solid lines. Vertical dimers are represented by open vertical rectangles on the brick latice and 
horizontal dimers are represented by solid rectangles. The numbers i =  1, 2 at the bottom of 
the figure indicate that those horizontal dimers located directly above a number i have 
activities zi, similar to Fig. 1. The square lattice of the Villain model is coincident with the 
superlattice of unit cells represented by dashed lines. The walls in the Villain model are 
represented by heavy dashed lines. Every state of the Villain model corresponds to a dimer 
configuration, but not all dimer configurations correspond to an allowed state of the Villain 
model. The dimer configuration indicated by the arrow shows one instance where there is no 
colrresponding Villain configuration. 
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to the partition function. Therefore, under this restriction we have the 
following approximate equality of the partition function of the dimer model 
and the grand canonical partition function of the Villain model 

Z(Z1, Z2) ,~ ,~,~(Z• Zy) (44) 

We remark that the transfer matrix approach used by Villain ~12) based on 
the "free fermion approximation" also involves a similar degree of 
approximation. Therefore, we expect the two methods to give the same 
values of thermodynamic functions only if/?7 >> 1. Otherwise they must give 
different results for nonuniversal quantities, but we argue that the critical 
exponents should still be expected to be the same. 

We can now translate the results of the previous sections on the K2- 
model to the case of the Villain model. The phase transition is determined 
by eq. 10, which becomes in this case 

z l+z2=e  ~"*/2(l+e a~)=l (45) 

Since we assume/37 >> 1, the above expression can be approximated by 

/3/~* = 2e -p~ (46) 

which is identical to eq. IV-4 of Ref. (12). 
The degree of incommensurability of an incommensurate phase is 

given by the density of walls or incommensurability ~. The average distance 
between the walls has been calculated before and is given by eq. 25. 
Therefore, the incommensurability in the Villain model is given by 

1 2 
c~= 7 rc~bo (47) 

From eq. 11 we obtain for/37 >> 1 and t ~ 0 + the result 

Substituting eq. 48 into eq. 47 we obtain 

rt ~ x/2( 1 +/3c7) tl/2 (49) 
l 

in agreement with eq. VI-5 of Ref. (12). The square root dependence of the 
incommensurability near the CI transition in two dimensions, ~ ~ t ~ where 
/)-=1 7, was first obtained by Pokrovsky and Talapov. (22) 

822/44/5-6-3 
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We can define the wall-wall correlation function in the same manner 
as the dimer-dimer correlation function defined in eq. 12, where now 
Pa, Pb, and Pab represent, respectively, the single and joint occupation 
probabilities of the bonds a and b by the walls. Since the presence or 
absence of the walls correspond to the presence or absence of horizontal 
dimers of type h2 and h~, we can identify the wall-wall correlations 
Cww(X,y) to the dimer-dimer correlations Ch2h2(X,y), Ch2h,2(x,y), 
Chih2(x,y), or Chih'~(x,y). In the asymptotic regime t ~ 0 +  and 

y2 __+ 0% all these dimer-dimer correlations give the same result, and 
we have 

1 (X/~x)2 sinZ(x/~x) _ (y/~y)2 cos2(X/~x) (50) 
Cww(X, y ) ~  n2~2 ]-(x/~,)2 + (y/~y)212 

where the characteristic lengths are given by 

1 
~* = 2~b----~ ~ [2(1 + tic'/)]-1/2 t-1/2 (51) 

and 

1 e ~~ 
~Y = 4zlz2q~ o sin 200 4(1 + flcT) t-1 (52) 

In order to avoid any false impressions we stress the fact that the 
results of this section are approximate only to the extent that the K2-model 
was applied to the solution of a different lattice model problem which can 
be related to the K2-model only approximately. It is then important to 
emphasize that the K2-model with the identification of the domain walls 
given in Fig. 1 is in itself a bona fide exactly solvable domain wall 
model. (7'8'11) We also mention that a dimer model with dislocations that 
has the K-model as a limiting case has been discovered and studied by 
exact methods. (2a) Together with the results of the present paper, it can be 
concluded that the K-model and its variations constitute a well-defined 
exactly solvable class of discrete lattice models having anisotropic, domain 
wall, commensurate-incommensurate transitions that provide rigorous 
tests of more general, but less exact, theories. 
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